Documentation
This commit is contained in:
parent
a9a0e518e8
commit
24e85deb17
39
README.md
39
README.md
|
@ -1,24 +1,53 @@
|
|||
# K-Means clustering algorithm using Apache Flink
|
||||
|
||||
Project for the Middleware Technologies for Distributed Systems.
|
||||
|
||||
## Note
|
||||
|
||||
- Only supports 2 dimensions points as input data
|
||||
- Non-deterministic. Only one starting point set is tried.
|
||||
- Case where a mean cannot be updated: it is discarded (the value of K asked is not the one in the results)
|
||||
|
||||
# Usage
|
||||
|
||||
Compile job data
|
||||
## Compile job package
|
||||
|
||||
You need Java ≥ 8 and Maven ≥ 3.1.
|
||||
|
||||
```shell
|
||||
mvn package
|
||||
```
|
||||
|
||||
Generate vectors to cluster
|
||||
## Generate random vectors to cluster (optional)
|
||||
|
||||
You need Python 3.
|
||||
|
||||
```shell
|
||||
./genVectors.py $DIMENSION $NUMBER > $FILE
|
||||
```
|
||||
|
||||
(example: `./genVectors.py 2 15 > myInput.csv`)
|
||||
(example: `./genVectors.py 2 1000 > input.csv`)
|
||||
|
||||
|
||||
## Classify
|
||||
|
||||
Run
|
||||
You need a running Apache Flink cluster
|
||||
|
||||
Input data is a point per line, in the folowing format: `xCoords,yCoords`.
|
||||
Output data is a point per line, in the folowing format: `xCoords,yCoords,clusterIndex`.
|
||||
|
||||
```shell
|
||||
flink run target/project-*.jar --input $INPUT --output $OUTPUT
|
||||
flink run target/project-*.jar --input $INPUT --output $OUTPUT [--k $K] [--maxIterations $ITERATIONS]
|
||||
```
|
||||
|
||||
(example: `flink run target/project-1.0.jar --input $PWD/input.csv --output $PWD/output.csv --k 5`)
|
||||
|
||||
## Show results
|
||||
|
||||
You need Python 3, NumPy, Matplotlib.
|
||||
|
||||
```shell
|
||||
./plotClassification.py $FILE
|
||||
```
|
||||
|
||||
(example: `./plotClassification.py output.csv`)
|
||||
|
|
2
pom.xml
2
pom.xml
|
@ -22,7 +22,7 @@ under the License.
|
|||
|
||||
<groupId>it.polimi.middleware.projects.flink</groupId>
|
||||
<artifactId>project</artifactId>
|
||||
<version>1.0-SNAPSHOT</version>
|
||||
<version>1.0</version>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<name>Flink Quickstart Job</name>
|
||||
|
|
|
@ -34,9 +34,9 @@ import org.apache.flink.api.java.utils.ParameterTool;
|
|||
public class KMeans {
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
final ParameterTool params = ParameterTool.fromArgs(args);
|
||||
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
|
||||
|
||||
final ParameterTool params = ParameterTool.fromArgs(args);
|
||||
final Integer k = params.getInt("k", 3);
|
||||
final Integer maxIterations = params.getInt("maxIterations", 25);
|
||||
|
||||
|
@ -49,28 +49,18 @@ public class KMeans {
|
|||
|
||||
// Find min and max of the coordinates to determine where the initial centroids should be
|
||||
DataSet<Tuple4<Double, Double, Double, Double>> area = input
|
||||
.map(new MapFunction<Point, Tuple4<Double, Double, Double, Double>>() {
|
||||
.map(new MapFunction<Point, Tuple4<Double, Double, Double, Double>>() { // Format points so
|
||||
// they can be passed as reduce parameters
|
||||
@Override
|
||||
public Tuple4<Double, Double, Double, Double> map(Point point) {
|
||||
return new Tuple4<Double, Double, Double, Double>(point.x, point.y, point.x, point.y);
|
||||
}
|
||||
}).reduce(new FindArea());
|
||||
|
||||
area.print();
|
||||
|
||||
DataSet<Tuple2<Double, Double>> testCentroids = area
|
||||
.flatMap(new RandomCentroids(k))
|
||||
.map(new MapFunction<Point, Tuple2<Double, Double>>() {
|
||||
@Override
|
||||
public Tuple2<Double, Double> map(Point point) {
|
||||
return new Tuple2<Double, Double>(point.x, point.y);
|
||||
}});
|
||||
testCentroids.print();
|
||||
}).reduce(new FindArea()); // Gives the minX, minY, maxX, maxY of all the point
|
||||
|
||||
// Generate random centroids
|
||||
IterativeDataSet<Point> centroids = area
|
||||
.flatMap(new RandomCentroids(k))
|
||||
.iterate(maxIterations);
|
||||
.flatMap(new RandomCentroids(k)) // Create centroids randomly in the area of the points
|
||||
.iterate(maxIterations); // Mark beginning of the loop
|
||||
|
||||
// Assign points to centroids
|
||||
DataSet<Tuple2<Point, Integer>> assigned = input
|
||||
|
@ -78,18 +68,18 @@ public class KMeans {
|
|||
|
||||
// Calculate means
|
||||
DataSet<Point> newCentroids = assigned
|
||||
.map(new MeanPrepare())
|
||||
.map(new MeanPrepare()) // Add Integer field to tuple to count the points
|
||||
.groupBy(1) // GroupBy CentroidID
|
||||
.reduce(new MeanSum())
|
||||
.map(new MeanDivide());
|
||||
.reduce(new MeanSum()) // Sum every points by centroid
|
||||
.map(new MeanDivide()); // Divide by the number of points to get the average
|
||||
|
||||
DataSet<Point> finalCentroids = centroids.closeWith(newCentroids);
|
||||
DataSet<Point> finalCentroids = centroids.closeWith(newCentroids); // Mark end of the loop
|
||||
|
||||
// Final assignment of points to centroids
|
||||
// Final assignment of points to centroids (that's the data we want)
|
||||
assigned = input
|
||||
.map(new AssignCentroid()).withBroadcastSet(finalCentroids, "centroids");
|
||||
|
||||
// Convert to external format
|
||||
// Convert to CSV format
|
||||
DataSet<Tuple3<Double, Double, Integer>> output = assigned
|
||||
.map(new MapFunction<Tuple2<Point, Integer>, Tuple3<Double, Double, Integer>>() {
|
||||
@Override
|
||||
|
@ -128,6 +118,7 @@ public class KMeans {
|
|||
}
|
||||
|
||||
public Point divideBy(Integer factor) {
|
||||
// Since input is always re-fetched we can overwrite the values
|
||||
x /= factor;
|
||||
y /= factor;
|
||||
return this;
|
||||
|
@ -148,12 +139,13 @@ public class KMeans {
|
|||
}
|
||||
|
||||
public static class RandomCentroids implements FlatMapFunction<Tuple4<Double, Double, Double, Double>, Point> {
|
||||
// minX, minY, maxX, maxY → Point × k
|
||||
Integer k;
|
||||
Random r;
|
||||
|
||||
public RandomCentroids(Integer k) {
|
||||
this.k = k;
|
||||
this.r = new Random(0);
|
||||
this.r = new Random();
|
||||
}
|
||||
|
||||
private Double randomRange(Double min, Double max) {
|
||||
|
@ -174,16 +166,19 @@ public class KMeans {
|
|||
|
||||
@Override
|
||||
public void open(Configuration parameters) throws Exception {
|
||||
// Centroids are sorted so they have an identifier common to all the operators
|
||||
centroids = new ArrayList(getRuntimeContext().getBroadcastVariable("centroids"));
|
||||
Collections.sort(centroids);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Tuple2<Point, Integer> map(Point point) {
|
||||
// Calculate the distance Point-Centroid for all centroids,
|
||||
// keep the identifier of the closest centroid
|
||||
Integer c;
|
||||
Point centroid;
|
||||
Double distance;
|
||||
Integer minCentroid = 4;
|
||||
Integer minCentroid = 0;
|
||||
Double minDistance = Double.POSITIVE_INFINITY;
|
||||
|
||||
for (c = 0; c < centroids.size(); c++) {
|
||||
|
|
Reference in a new issue