One time calculations
This commit is contained in:
parent
de6a881428
commit
72a187112c
21
plotClassification.py
Executable file
21
plotClassification.py
Executable file
|
@ -0,0 +1,21 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
FILENAME = sys.argv[1] # CSV file
|
||||
|
||||
data = np.loadtxt(FILENAME, delimiter=',')
|
||||
|
||||
D = data[0].size - 1 # Number of dimensions
|
||||
|
||||
assert D <= 2
|
||||
assert D > 0
|
||||
|
||||
X = data[:, 0]
|
||||
Y = data[:, 1] if D > 1 else np.zeros(len(data))
|
||||
C = data[:, -1]
|
||||
|
||||
plt.scatter(X, Y, c=C)
|
||||
plt.show()
|
|
@ -1,11 +1,26 @@
|
|||
package it.polimi.middleware.projects.flink;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.ObjectInputStream;
|
||||
import java.io.ObjectOutputStream;
|
||||
import java.io.Serializable;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.Iterator;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.flink.api.common.functions.MapFunction;
|
||||
import org.apache.flink.api.common.functions.ReduceFunction;
|
||||
import org.apache.flink.api.common.functions.RichMapFunction;
|
||||
import org.apache.flink.api.common.typeinfo.TypeHint;
|
||||
import org.apache.flink.api.common.typeinfo.TypeInformation;
|
||||
import org.apache.flink.api.java.tuple.Tuple1;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
import org.apache.flink.configuration.Configuration;
|
||||
|
||||
import org.apache.flink.api.java.DataSet;
|
||||
import org.apache.flink.api.java.ExecutionEnvironment;
|
||||
|
@ -18,6 +33,8 @@ public class KMeans {
|
|||
final ParameterTool params = ParameterTool.fromArgs(args);
|
||||
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
|
||||
|
||||
final Integer k = params.getInt("k", 3);
|
||||
|
||||
// Read CSV input
|
||||
DataSet<Tuple1<Double>> csvInput = env.readCsvFile(params.get("input")).types(Double.class);
|
||||
|
||||
|
@ -25,26 +42,127 @@ public class KMeans {
|
|||
DataSet<Double> input = csvInput
|
||||
.map(point -> point.f0);
|
||||
|
||||
// DEBUG Means all the points
|
||||
DataSet<Tuple1<Double>> mean = input
|
||||
.map(new MapFunction<Double, Tuple2<Double, Integer>>() {
|
||||
public Tuple2<Double, Integer> map(Double value) {
|
||||
return new Tuple2<Double, Integer>(value, 1);
|
||||
}
|
||||
})
|
||||
.reduce(new ReduceFunction<Tuple2<Double, Integer>>() {
|
||||
public Tuple2<Double, Integer> reduce(Tuple2<Double, Integer> a, Tuple2<Double, Integer> b) {
|
||||
return new Tuple2<Double, Integer>(a.f0 + b.f0, a.f1 + b.f1);
|
||||
}
|
||||
})
|
||||
.map(new MapFunction<Tuple2<Double, Integer>, Tuple1<Double>>() {
|
||||
public Tuple1<Double> map(Tuple2<Double, Integer> value) {
|
||||
return new Tuple1<Double>(value.f0 / value.f1);
|
||||
}
|
||||
});
|
||||
// Generate random centroids
|
||||
final RandomCentroids r = new RandomCentroids(k);
|
||||
DataSet<Double> centroids = env.fromCollection(r, Double.class);
|
||||
|
||||
mean.writeAsCsv(params.get("output", "output.csv"));
|
||||
centroids.print();
|
||||
|
||||
// Assign points to centroids
|
||||
DataSet<Tuple2<Double, Integer>> assigned = input
|
||||
.map(new AssignCentroid()).withBroadcastSet(centroids, "centroids");
|
||||
|
||||
// Calculate means
|
||||
DataSet<Double> newCentroids = assigned
|
||||
.map(new MeanPrepare())
|
||||
.groupBy(1) // GroupBy CentroidID
|
||||
.reduce(new MeanSum())
|
||||
.map(new MeanDivide());
|
||||
|
||||
// Re-assign points to centroids
|
||||
assigned = input
|
||||
.map(new AssignCentroid()).withBroadcastSet(newCentroids, "centroids");
|
||||
|
||||
newCentroids.print();
|
||||
assigned.writeAsCsv(params.get("output", "output.csv"));
|
||||
|
||||
env.execute("K-Means clustering");
|
||||
}
|
||||
|
||||
|
||||
public static class RandomCentroids implements Iterator<Double>, Serializable {
|
||||
|
||||
Integer k;
|
||||
Integer i;
|
||||
Random r;
|
||||
|
||||
public RandomCentroids(Integer k) {
|
||||
this.k = k;
|
||||
this.i = 0;
|
||||
this.r = new Random(0);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean hasNext() {
|
||||
return i < k;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Double next() {
|
||||
i += 1;
|
||||
return r.nextDouble();
|
||||
}
|
||||
|
||||
private void readObject(ObjectInputStream inputStream) throws ClassNotFoundException, IOException {
|
||||
inputStream.defaultReadObject();
|
||||
}
|
||||
private void writeObject(ObjectOutputStream outputStream) throws IOException {
|
||||
outputStream.defaultWriteObject();
|
||||
}
|
||||
}
|
||||
|
||||
public static class AssignCentroid extends RichMapFunction<Double, Tuple2<Double, Integer>> {
|
||||
// Point → Point, CentroidID
|
||||
private List<Double> centroids;
|
||||
|
||||
@Override
|
||||
public void open(Configuration parameters) throws Exception {
|
||||
centroids = new ArrayList(getRuntimeContext().getBroadcastVariable("centroids"));
|
||||
Collections.sort(centroids);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Tuple2<Double, Integer> map(Double point) {
|
||||
Integer c;
|
||||
Double centroid;
|
||||
Double distance;
|
||||
Integer minCentroid = 4;
|
||||
Double minDistance = Double.POSITIVE_INFINITY;
|
||||
|
||||
for (c = 0; c < centroids.size(); c++) {
|
||||
centroid = centroids.get(c);
|
||||
distance = distancePointCentroid(point, centroid);
|
||||
if (distance < minDistance) {
|
||||
minCentroid = c;
|
||||
minDistance = distance;
|
||||
}
|
||||
}
|
||||
|
||||
return new Tuple2<Double, Integer>(point, minCentroid);
|
||||
}
|
||||
|
||||
private Double distancePointCentroid(Double point, Double centroid) {
|
||||
return Math.abs(point - centroid);
|
||||
// return Math.sqrt(Math.pow(point, 2) + Math.pow(centroid, 2));
|
||||
}
|
||||
}
|
||||
|
||||
public static class MeanPrepare implements MapFunction<Tuple2<Double, Integer>, Tuple3<Double, Integer, Integer>> {
|
||||
// Point, CentroidID → Point, CentroidID, Number of points
|
||||
@Override
|
||||
public Tuple3<Double, Integer, Integer> map(Tuple2<Double, Integer> point) {
|
||||
return new Tuple3<Double, Integer, Integer>(point.f0, point.f1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
public static class MeanSum implements ReduceFunction<Tuple3<Double, Integer, Integer>> {
|
||||
// Point, CentroidID (irrelevant), Number of points
|
||||
@Override
|
||||
public Tuple3<Double, Integer, Integer> reduce(Tuple3<Double, Integer, Integer> a, Tuple3<Double, Integer, Integer> b) {
|
||||
return new Tuple3<Double, Integer, Integer>(sumPoints(a.f0, b.f0), a.f1, a.f2 + b.f2);
|
||||
}
|
||||
|
||||
private Double sumPoints(Double a, Double b) {
|
||||
return a + b;
|
||||
}
|
||||
}
|
||||
|
||||
public static class MeanDivide implements MapFunction<Tuple3<Double, Integer, Integer>, Double> {
|
||||
// Point, CentroidID (irrelevant), Number of points → Point
|
||||
@Override
|
||||
public Double map(Tuple3<Double, Integer, Integer> point) {
|
||||
return point.f0 / point.f2;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Reference in a new issue