2 Dimensions

This commit is contained in:
Geoffrey Frogeye 2019-01-24 17:31:52 +01:00
parent e94e4c0ce1
commit d43f0ebec8

View file

@ -38,40 +38,84 @@ public class KMeans {
final Integer maxIterations = params.getInt("maxIterations", 25);
// Read CSV input
DataSet<Tuple1<Double>> csvInput = env.readCsvFile(params.get("input")).types(Double.class);
DataSet<Tuple2<Double, Double>> inputCsv = env.readCsvFile(params.get("input")).types(Double.class, Double.class);
// Convert CSV to internal format
DataSet<Double> input = csvInput
.map(point -> point.f0);
// Convert to internal format
DataSet<Point> input = inputCsv
.map(tuple -> new Point(tuple.f0, tuple.f1));
// Generate random centroids
final RandomCentroids r = new RandomCentroids(k);
IterativeDataSet<Double> centroids = env.fromCollection(r, Double.class).iterate(maxIterations);
IterativeDataSet<Point> centroids = env.fromCollection(r, Point.class).iterate(maxIterations);
// Assign points to centroids
DataSet<Tuple2<Double, Integer>> assigned = input
DataSet<Tuple2<Point, Integer>> assigned = input
.map(new AssignCentroid()).withBroadcastSet(centroids, "centroids");
// Calculate means
DataSet<Double> newCentroids = assigned
DataSet<Point> newCentroids = assigned
.map(new MeanPrepare())
.groupBy(1) // GroupBy CentroidID
.reduce(new MeanSum())
.map(new MeanDivide());
DataSet<Double> finalCentroids = centroids.closeWith(newCentroids);
DataSet<Point> finalCentroids = centroids.closeWith(newCentroids);
// Final assignment of points to centroids
assigned = input
.map(new AssignCentroid()).withBroadcastSet(finalCentroids, "centroids");
assigned.writeAsCsv(params.get("output", "output.csv"));
// Convert to external format
DataSet<Tuple3<Double, Double, Integer>> output = assigned
.map(new MapFunction<Tuple2<Point, Integer>, Tuple3<Double, Double, Integer>>() {
@Override
public Tuple3<Double, Double, Integer> map(Tuple2<Point, Integer> tuple) {
return new Tuple3<Double, Double, Integer>(tuple.f0.x, tuple.f0.y, tuple.f1);
}
});
output.writeAsCsv(params.get("output", "output.csv"));
env.execute("K-Means clustering");
}
public static class Point implements Comparable<Point> {
public Double x;
public Double y;
public static class RandomCentroids implements Iterator<Double>, Serializable {
public Point(Double x, Double y) {
this.x = x;
this.y = y;
}
public int compareTo(Point other) {
int comp = x.compareTo(other.x);
if (comp == 0) {
comp = y.compareTo(other.y);
}
return comp;
}
public Point addTo(Point other) {
// Since input is always re-fetched we can overwrite the values
x += other.x;
y += other.y;
return this;
}
public Point divideBy(Integer factor) {
x /= factor;
y /= factor;
return this;
}
public Double distanceTo(Point other) {
return Math.sqrt(Math.pow(other.x - x, 2) + Math.pow(other.y - y, 2));
}
}
public static class RandomCentroids implements Iterator<Point>, Serializable {
Integer k;
Integer i;
@ -89,9 +133,9 @@ public class KMeans {
}
@Override
public Double next() {
public Point next() {
i += 1;
return r.nextDouble();
return new Point(r.nextDouble(), r.nextDouble());
}
private void readObject(ObjectInputStream inputStream) throws ClassNotFoundException, IOException {
@ -102,9 +146,9 @@ public class KMeans {
}
}
public static class AssignCentroid extends RichMapFunction<Double, Tuple2<Double, Integer>> {
public static class AssignCentroid extends RichMapFunction<Point, Tuple2<Point, Integer>> {
// Point Point, CentroidID
private List<Double> centroids;
private List<Point> centroids;
@Override
public void open(Configuration parameters) throws Exception {
@ -113,56 +157,48 @@ public class KMeans {
}
@Override
public Tuple2<Double, Integer> map(Double point) {
public Tuple2<Point, Integer> map(Point point) {
Integer c;
Double centroid;
Point centroid;
Double distance;
Integer minCentroid = 4;
Double minDistance = Double.POSITIVE_INFINITY;
for (c = 0; c < centroids.size(); c++) {
centroid = centroids.get(c);
distance = distancePointCentroid(point, centroid);
distance = point.distanceTo(centroid);
if (distance < minDistance) {
minCentroid = c;
minDistance = distance;
}
}
return new Tuple2<Double, Integer>(point, minCentroid);
return new Tuple2<Point, Integer>(point, minCentroid);
}
private Double distancePointCentroid(Double point, Double centroid) {
return Math.abs(point - centroid);
// return Math.sqrt(Math.pow(point, 2) + Math.pow(centroid, 2));
}
}
public static class MeanPrepare implements MapFunction<Tuple2<Double, Integer>, Tuple3<Double, Integer, Integer>> {
public static class MeanPrepare implements MapFunction<Tuple2<Point, Integer>, Tuple3<Point, Integer, Integer>> {
// Point, CentroidID Point, CentroidID, Number of points
@Override
public Tuple3<Double, Integer, Integer> map(Tuple2<Double, Integer> point) {
return new Tuple3<Double, Integer, Integer>(point.f0, point.f1, 1);
public Tuple3<Point, Integer, Integer> map(Tuple2<Point, Integer> info) {
return new Tuple3<Point, Integer, Integer>(info.f0, info.f1, 1);
}
}
public static class MeanSum implements ReduceFunction<Tuple3<Double, Integer, Integer>> {
public static class MeanSum implements ReduceFunction<Tuple3<Point, Integer, Integer>> {
// Point, CentroidID (irrelevant), Number of points
@Override
public Tuple3<Double, Integer, Integer> reduce(Tuple3<Double, Integer, Integer> a, Tuple3<Double, Integer, Integer> b) {
return new Tuple3<Double, Integer, Integer>(sumPoints(a.f0, b.f0), a.f1, a.f2 + b.f2);
}
private Double sumPoints(Double a, Double b) {
return a + b;
public Tuple3<Point, Integer, Integer> reduce(Tuple3<Point, Integer, Integer> a, Tuple3<Point, Integer, Integer> b) {
return new Tuple3<Point, Integer, Integer>(a.f0.addTo(b.f0), a.f1, a.f2 + b.f2);
}
}
public static class MeanDivide implements MapFunction<Tuple3<Double, Integer, Integer>, Double> {
public static class MeanDivide implements MapFunction<Tuple3<Point, Integer, Integer>, Point> {
// Point, CentroidID (irrelevant), Number of points Point
@Override
public Double map(Tuple3<Double, Integer, Integer> point) {
return point.f0 / point.f2;
public Point map(Tuple3<Point, Integer, Integer> info) {
return info.f0.divideBy(info.f2);
}
}